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1    Introduction 

Dividing a computation into separate stages is a common informal technique for the derivation of 
algorithms [JS86]. For example, instead of directly matching strings against a regular expression 
we may first compile the regular expression into a finite automaton and then execute the same 
automaton on different strings. Because significant efficiency gains can often be realized, there is a 
substantial body of work concerned with the automation of staged computation. Partial evaluation 
(see, for example, [JGS93]) divides the computation into two stages based on the early availability 
of some function arguments. In practice this appears most successful when supported by binding- 
time analysis [GJ91], which statically determines which parts of a computation may be carried out 
in the first phase, and which parts remain to be done in the second phase. 

It often takes considerable ingenuity to write programs in such a way that they exhibit proper 
binding-time separation, that is, that the computation intended to occur when the early arguments 
become available can in fact be carried out. From a programmer's point of view it is therefore 
desirable to declare the expected binding-time separation and obtain constructive feedback when 
the computation may not be staged as expected. This suggests that the binding-time properties of 
a function should be expressed in a prescriptive type system, and that binding-time analysis should 
be a form of type checking. The work on two-level functional languages [NN92] and some work on 
partial evaluation (for example, [GJ91]) shows that this view is indeed possible. 

Up to now these type systems have been motivated algorithmically, that is, they are explicitly 
designed to support specialization of a function to its early arguments. In this paper we show that 
they can also be motivated logically, and that the proper logical system for expressing computation 
stages is the intuitionistic variant of the modal logic S4 [Pra65]. This observation immediately gives 
rise to a natural generalization of standard binding-time analysis by allowing multiple computation 
stages, initiation of successor stages, and sharing of code across multiple stages. Such extensions 
are normally considered external issues. For example, Jones [Jon91] describes a typed framework 
for such concepts, but only at the level of operations on whole programs. Our framework instead 
provides these operations within the language of programs. This makes our approach particularly 
relevant to run-time code generation, where specialization takes place when the program is exe- 
cuted. Indeed, the authors and others have designed and implemented an extension of ML based 
on the type system described here which generates and executes abstract machine code at run 
time [WLPD98, WLP98]. 

One of our conclusions is that when we extend the Curry-Howard isomorphism between proofs 
and programs from intuitionistic logic to the intuitionistic modal logic S4 we obtain a natural and 
logical explanation of computation stages. The isomorphism relates proofs in modal logic to func- 
tional programs which manipulate program fragments for later stages. Each world in the Kripke 
semantics of modal logic corresponds to a stage in the computation, and a term of type DA corre- 
sponds to code to be executed in a future stage of the computation. The modal restrictions imposed 
on terms of type DA guarantee that a function of type B —>■ DA can carry out all computation 
concerned with its argument while generating the residual code of type A. 

We begin by considering A^D, a modal A-calculus based on a natural-deduction formulation of 
intuitionistic modal S4. The presentation is new, but draws on ideas in [BdP92, PW95, Gir93]. 

We then construct a functional language Mini-ML° by augmenting A^D with a fixpoint oper- 
ator, natural numbers, and pairs and endow it with a natural call-by-value operational semantics 
along the lines of Mini-ML [CDDK86]. 

Mini-ML° can be somewhat awkward because it often requires a broad syntactic structuring of 
the program to directly reflect staging. This simplifies the study of staging properties of Mini-ML°, 



but it also makes it difficult to directly relate it to previous work on staged languages, such as two- 
level languages [NN92]. We thus consider a more implicit formulation of S4 motivated by its Kripke 
semantics following [MM94, PW95] and then augment it as before to form Mini-MLD. With some 
syntactic sugar, Mini-MLD is intended to serve as the basis for a conservative extension of ML 
with practical means to express and check staging of computation. The operational semantics 
of Mini-MLq is givenby a type-preserving translation to Mini-ML° whose correctness is not en- 
tirely trivial. This translation also describes the first phase of a plausible compilation strategy for 
Mini-MLD for run-time code generation. 

We then exhibit a simple full and faithful embedding of Nielson & Nielson's two-level lan- 
guage [NN92] in Mini-MLD, providing further evidence that Mini-MLD provides an intuitively 
appealing, technically correct, and logically motivated view of staged computation. 

2    A Modal A-Calculus 

In this section we present the modal A-calculus A^D. We start by directly motivating the calculus 
in terms of "manipulation of code" and relate this to modal logic. We then present typing rules 
based on a natural deduction system for modal S4, give ß and 77 rules for the modal D operator, 
and show that they satisfy subject reduction and expansion, respectively. We also demonstrate the 
relationship between A^D and computation staging via two theorems. 

2.1     Natural Deduction for Validity 

A common feature of many forms of staged computation is the manipulation of code. Macro ex- 
panders and partial evaluators typically manipulate source expressions, run-time code generators 
typically manipulate object code or some form of intermediate code. To show how such manipu- 
lation of code may be accounted for in a typed framework, we start with a typed A-calculus and 
introduce a new type constructor □, where UA represents code of type A. This type remains ab- 
stract in the sense that we do not commit ourselves to a particular way of implementing it. In this 
way our type system can support diverse applications. 

Next we have to decide which operations should be supported on code. First, we should be 
able to manipulate an arbitrary closed expression as code. This suggests a constructor box where 
box E: DA if E:Ainthe empty context. This is essentially the modal rule of necessitation. The 
second means of constructing code is by substitution: we can substitute code for a free variable 
appearing in code to obtain code. In a meaningful type system such substitution must be "hy- 
gienic" and rename bound variables if necessary to avoid capture. The restriction that we can only 
substitute code (and not arbitrary expressions) into code is reflected exactly in one of Prawitz's 
variants of the modal necessitation rule [Pra65]: We can infer that box E : OA from E : A if all 
hypotheses of the latter derivation are of the form x : OB. This means that every free variable x 
in E must have a type of the form DB. Prawitz's elimination rule allows us to infer A from OA. 
In terms of the functional interpretation, this suggest evaluation: we execute the code of type A to 
obtain a value of type A. 

Unfortunately, the natural deduction formulation of modal logic based on these two rules does 
not obey subject reduction (see [PW95] for a counterexample). We can trace the difficulty to the 
global side-condition on the necessitation rule which requires assumptions to be of a particular 
form. If we express this condition directly on the level of the judgments, we are led to a different 
system which does satisfy subject reduction and other properties desirable for a system of natural 
deduction. To this end, we introduce two basic judgments on propositions, "A is true" and "A is 



valid''''. We have hypotheses expressing that certain proposition are true and others are valid. We 
write 

(A1,...,Am);(B1,...,Bn)h
eC 

to express 

Under the hypothesis that Ax,..., Am are valid and Bi,..:, Bn are true, C is true.       ,:'' 

Since our main goal is the analysis of the Curry-Howard isomorphism between proofs and programs, 
we label the hypotheses and annotate C with a proof term E. 

(u1:Ai,...,um:Am);(x1:Bi,...,xn:Bn) he E : C 

Here and throughout this paper, we presuppose that that all variables labelling hypotheses are 
distinct. 

Taking the functional view for a moment, we think of «i,..., um as variables ranging over code 
and xi,..., xn as variables ranging over values which may occur free in the expression E. Generally, 
we write A for a context Ui'.Ai,..., um:Am declaring modal variables u (also called code variables) 
and T for a context Xi'.Bi,.. .,xn:Bn declaring ordinary variables x (also called value variables). 

But how do we conclude that A is valid? In informal terms, A is valid if it is true under all 
possible interpretations. In other words, its derivation may not depend on any hypotheses about 
the truth of propositions. That is, we judge that C is valid under the hypothesis that A\,. ..,Am 

are valid if 
{Au...,Am);-\-eC 

or, with proof terms, 
(«i:Ai,...,Mm:Am);-he E :C 

With respect to our functional interpretation, this means that E contains only free code variables, 
but no free value variables. 

We now develop the inference rules characterizing the judgments and then introduce the logical 
connectives. First we have 

x:A in T  ovar 
A;T\-ex:A 

since we can conclude that A is true from the hypothesis that A is true. But it is certainly also the 
case that A is true if A is valid. 

u:A in A 
 mvar 
A;Theu:A 

The transition from a judgment of validity to that of truth corresponds on the functional side to a 
transition from code to value. We will use this later to encode evaluation. 

Second, we consider the substitution principles which are derived from the nature of the hypo- 
thetical judgments. In purely logical terms: if we have a derivation showing that C is true from 
the hypothesis that A is true, then we can substitute an actual derivation establishing the truth 
of A for all uses of the hypothesis. This results in a derivation for the truth of C which no longer 
depends on the hypothesis. With proof terms, the substitution principle for ordinary hypotheses 
reads: 

Ordinary Substitution Principle 
//A; T P Ei : A and A; (I\ x:A, V) K E2 : B then A; (I\ V) P {Exjx\E2 : B. 



Similarly, we should be able to substitute a derivation demonstrating the validity of A for all 
uses of the hypothesis that A is valid. 

Modal Substitution Principle 
If A; ■ ^ Ei : A and (A,u:A,A');T P E2 : B then (A, A');T K [£i/u]£2 : B. 

It is critical here that A is valid and not just true, which should be obvious from what is said 
above. Therefore, we must require A; • P Ex : A rather than just A;T K Ex : A (which would be 
unsound). 

Eventually, when our system is complete, we have to prove the validity of the two substitution 
principles to verify that there is no mistake in the design of our rules. Similar guiding properties 
of hypothetical judgments are exchange (the order of hypotheses should not matter), weakening 
(hypotheses need not be used) and contraction (hypotheses may be used more than once). All of 
these are proved in Section 2.4. 

The next step is to introduce the logical connectives and operators. In natural deduction, these 
are characterized by introduction and elimination rules which must match in an appropriate way. 
One of the underlying principles of natural deduction is that connectives should be orthogonal to 
each other: each introduction or elimination rule should refer only to the connective whose meaning 
we define. 

We first discuss this using the familiar implication (or function type, under the Curry-Howard 
corrspondence). We want to express that A -» B should be true if B is true under the hypothesis 
that A is true. 

A;(T,x:A)he E:B 

A;The \x:A. E-.A^B^* 

Note that A is not affected—validity does not enter the considerations for this connective.   On 
proof terms, this rule explicitly introduces the function which maps proofs of A to proofs of B. 

Conversely, if we know that A -»■ B is true then B should be true under hypothesis A. So if we 
also know that A is true, we can conclude that B must be true. 

A;T he E2 : A ^ B A-^^E^.A 

A;T^ E2E1:B ~^E 

On proof terms, this applies the function E2 which maps proofs of A to proofs of B to the given 
proof Ei of A. 

How do we know the introduction and elimination rules match and thus define a meaningful 
connective? We should verify two conditions: local soundness and local completeness. Local sound- 
ness^ ensures that we cannot gain information by introducing a connective and then immediately 
eliminating it—we must already be able to make the same judgment without the detour. This 
guarantees that the elimination rules are not too strong. Local completness ensures that we can 
recover all information present in a connective: there is some way to apply the elimination rules so 
we can reconstitute a proof of the original proposition using its introduction rules. This guarantees 
that the elimination rules are not too weak. 

On proof terms, local soundness and completeness are witnessed by local reduction and expan- 
sion, taking advantage of the substitution principles. 

V2 

A;T,x:A^ E2 : B 
 -H pi _^ ?>2 
A;TP (Xx:A.E2):A^B A;T ^ Ej : A  ' =>   A; T P [E1/x)E2 : B 

A;rhe(Ax:A. E2)EX:B ~^E 



Here, V'2 is constructed by substitution of V\ into T>2, as indicated in the discussion of the 
(ordinary) substitution principle. On proof terms we have ordinary /3-reduction. Local completeness 
is witnessed by ^-expansion. 

V 

u  ovar 
A;T,x:A^ E:A^B A;T,x:A\-e x : A 

 :—-4"E 
A;T^E:A^B A;T,x:A P Ex : B 

A;TP (Xx:A. Ex) : A-> B 

Here, V is constructed by weakening from V (we add the unused hypothesis x:A), which has 
no effect on the proof term E. On proof terms, therefore, we have ordinary ??-expansion. 

Next we consider the modal operator. DA should be true if A is valid. Written as an inference 
rule: 

A; • P E : A 
 Dl 
A;rheboxE:D4 

Note how the premise enforces that A is valid by requiring the ordinary context to be empty. 
On proof terms this means that only modal variables from A can occur free in E. 

The corresponding elimination is not straightforward. For example, Prawitz's rule from above 
which concludes A from DA is locally sound but not complete. Intuitively, this should be clear 
because we are losing information when we make the step from "DA is true" to "A is true". An 
alternative rule which concludes "A is valid'1'' from "DA is true''' is unsound, because the judgment 
that DA is true may actually depend on hypotheses about the truth of other propositions. 

Instead we reason as follows: if DA is true under some hypotheses, then any judgment we make 
under the additional hypothesis that A is valid, must in fact be evident. 

A;rP£i:DA (A,u:A);T he E2 : B 

A; T P let box u = E1'mE2:B 
DE 

Thus the elimination rule for D introduces a modal hypothesis and the corresponding term 
construct has the form of a let. From the functional point of view, E\ represents a value of 
type DA containing some code. This code is accessible in E2 with the name u. Local soundness 
and completeness with this construction are easily verified. Local soundness is guaranteed by the 
reduction 

A; • P Ex : A 
D| V* ^ V2 

A;T H* box £i : DA (A,u:A);T ^ E2 : B A;T P [Ex/u}E2 : B 
 DE 

A; T P let box u = box E1 inE2:B 

where V2 is the derivation constructed by substitution as indicated in the modal substitution 
principle. 

The expansion below demonstrates local completness, since the result of the elimination rule 
applied to a derivation of DA contains enough information to reconstitute a derivation of DA. 

 mvar 
^. (A,u:A);- P u : A 

V D  D| 
ATPE'Gi   ^    A;rPE:DA (A,u:A);T he box u : DA 
 DE 

A; T P let box u = E in box u : DA 



^ Other standard logical connectives such as negation, conjunction, disjunction, universal and 
existential quantification can be defined by introduction and elimination rules in a similar manner 
to implication—they do not need to directly interact with the modal hypotheses. Since we are in 
the intuitionistic setting, the modal possibility operator OA cannot be defined via negation. It 
can be characterized directly by introduction and elimination rules which are locally sound and 
complete, buf only if we introduce a new judgment "A is possibly true". We leave the details to a 
future paper, since it does not directly concern our main objective here. 

Our presentation simplifies that of the modal A-calculus A^D from [BdP92, PW95] by elim- 
inating the need for simultaneous substitution while preserving subject reduction. It is inspired 
by sequent calculi proposed by Andreoli [And92] for linear logic and by Girard [Gir93] for LU. 
Wadler [Wad93] has formulated a linear A-calculus with two contexts, which shares some features 
with our calculus. The methodolgy we followed is due to Martin-Löf [ML85a, ML85b], although we 
have not seen the normative use of local soundness and completeness as witnessed by /^-reduction 
and 77-expansion. Note that only /^-reduction has computational significance, while 77-expansion 
internalizes an extensionality principle. 

The elimination construct for □ allows us to bind a variable u in A to code of type A, written 
as let box u = Ex in E2. Evaluation of code, certainly one of the most fundamental operations, is 
then definable by 

eval = (Xx-.nA. let box u — x in u) : DA ->■ A. 

Here, and from now on, we associate D more strongly than -+ to avoid excessive parentheses. Note 
that the opposite coercion, Xx:A. box x, cannot be well-typed, since x is an arbitrary argument and 
will not necessarily be bound to code. Furthermore, it violates the concept of stage separation since 
x is an "early" argument which we refer to "late", that is, inside box. Here are a few other examples 
of modal propositions and proofs from which the natural deductions can be easily reconstructed. 

P Xx:0(A -»• B). Xy-.OA. let box u = x in let box v = y in box (u v) 
:D(A^B) -» (nA^aB) 

K Xx-.nA. let box u = x in box box u 
: DA -» ODA 

K Xx-.OA. let box u = x in u 
: OA -> A 

Note that the first law holds in all modal logics, while the second and third correspond to reflexivity 
and transitivity of the accessibility relation between worlds in the Kripke semantics [Kri63] in 
axiomatic formulations of modal logics. 

2.2    Syntax 

We now summarize the system of natural deduction for S4 and its properties. 

Types A   ::=   A1->A2\aA 
Terms E   ::=   x\ Xx:A. E \ Ex E2 \ 

u I box E I let box u = E\ in E2 

Ordinary Contexts    Y    ::—    -\T,x:A 
Modal Contexts        A    ::=    -\A,u:A 

We use A, B for types, x for ordinary variables and u for modal variables assuming that any 
variable can be declared at most once in a context. Bound variables may be renamed tacitly, and 



leading -'s may be omitted from contexts. We write [E'/x]E (and similarly for modal variables) for 
the result of substituting E' for x in E, renaming bound variables as necessary in order to avoid 
the capture of free variables in E'. 

2.3    Typing Rules 

A; T H5 E : A    E has type A in modal context A and ordinary context T. 

Our system has the property that a valid term has a unique type and typing derivation, except 
for possibly unused hypotheses. 

A-calculus Fragment 

x:A in T 
ovar 

A;The x:A 

A;(T,x:A)P E:B 
-H 

A;T t-e \x:A. E : A-* B 

A; r P Ex : B -»■ A A; T he E2 : B 

A; r he Ei E2 : A 
-+E 

Modal Fragment 

u:A in A 
mvar 

A;TFu:A 

A;-P E: A 

A;T r* box £7: DA 

A; r P let box « = Ex in £72 : 5 
□ E 

2.4    Reduction and Expansion 

The notions of /3-reduction and 77-expansion are fundamental to the A-calculus. The preservation of 
types under /3-reduction is the functional analog of local soundness for rules of natural deduction; 
the preservation of types under 77-expansion is the functional analog of local completeness. But first 
we need to verify the characteristic properties of hypothetical judgments: exchange, weakening, 
contraction, and substitution. 

Lemma 1 (Structural Properties of Contexts) 

1. If (Ai, u:A, v.B, A2); V K E : C then (Auv:B, u:A, A2); r K E : C. 

2. If A; (ri, x:A, y.B, T2) ^ E:C then A; (Ti,y:B, x:A, T2) H8 E : C. 



3. If&;Y\*E:Cthen{k,u\A);T\*E:C. 

4. If A;TK E:C then A; (Y,x:A)^ E:C. 

5. If (A, u:A, v:A); Y K E : C then (A, w:A); Y P [w/u][w/v]E: C. 

5. //A; (r, x:A, y.A) \* E : C then A; (I\ z:A) K [z/x][z/y]E : C. 

Proof: By straightforward inductions over the structure of the given derivations. Recall the global 
assumption that each variable is declared at most once in a context, and that bound variables may 
be renamed tacitly. D 

Lemma 2 (Substitution) 

1. If A; r K Ex : A and A; (I\ x:A, Y>) K E2 : B then A; (r, Y') K [^/a;]^ : B. 

5. // A; • K Ex : A and (A, u:A, A'); rKE2:ß i/jen (A, A'); Y K [£?i/ti]£2 : £. 

Proof: By straightforward inductions on the typing derivations for E2. D 

The /3-reductions and ^-expansions on proof terms used in the preceding section to verify local 
soundness and completeness are summarized below. 

(\x:A.E2)E1   HA    [EX/X]E2 

let box u = box Ex in E2   KA   [EI/U]E2 

E:A^B   H^.   Xx-.A.Ex 

E : DA   h-^>   let box u = E in box u 

We now validate these rules by showing that they satisfy subject reduction. 

Theorem 3 (Subject Reduction and Expansion) 

1. If A;T K E : A and E A E' then A;T P E' : A. 

2. J/A;r P £:i(in(l£:i^£' «Aen A;rK£':A 

Proof: In the case of a reduction we first apply inversion and then use the substitution properties 
to obtain the result. In the case of an expansion we directly construct the typing derivation for the 
expanded term. r-j 

We will not discuss commuting conversions for the DE rule here, since they are not particu- 
larly relevant to our intended application. Similarly, we will not present a formal proof of strong 
normalization, although this is easy to obtain by an embedding into the ordinary simply-typed 
A-calculus. 



2.5     Staged Computation 

We now show the relationship between A^D and staged computation. It is our intention that those 
parts of a term enclosed by a box constructor should be considered "uninterpreted code". Thus, 
when we construct a computational interpretation of A^D based on /^-reduction, it is appropriate 
to omit the congruence rule for box. We have the judgment: 

E\—► E'    E reduces to E' 

This judgment is defined by the following rules. 

ß 
(Xx:A. E2)E1 ^ [E1/x)E2 

let box u = box E\ in E2 >—>■ [Ei/u]E2 

E^E' 

Uß 

\x:A. E i—> Xx:A. E' 

E1^E[ 

congJam 

TP   XT' v    IT1' TP 
EJ\EJ2  I > -C'l-C'2 

E2 i—>• E'2 

E\E2 i—> E\E2 

E1^^E[ 

cong_appl 

cong_app2 

congJetboxl 

cong_letbox2 

let box u = Ei in E2 \—>■ let box u = E[ in E2 

E2 i—> E2 

let box u = Ei in E2 i—> let box u = E\ in E'2 

We write i—>* for the reflexive and transitive closure of i—>. 

Theorem 4 (Subject Reduction with Congruences) 
J/A;rp£: A and E ^* E' then A;T P E': A. 

Proof: By a simple induction on the derivation of E i—>* E', using subject reduction (Theorem 3) 
for the base cases. D 

To demonstrate the relationship between this reduction relation and computation staging, we 
roughly follow the binding-time correctness criteria described by Palsberg [Pal93]. Palsberg pre- 
sented a modular proof of correctness for binding-time analyses based on two-level languages, such 

10 



as those studied in [GJ91]. The first criterion is consistency, namely that static reduction of a 
well-annotated term cannot "go wrong". In our case, well-annotated means well-typed, and the 
above subject reduction theorem corresponds roughly to the property of not "going wrong". To 
make the correspondence more evident, we can simply note that a well-typed term cannot contain 
the "wrong" forms (box E[) E2 and let box u = (\x:A. E[) in E'2. 

The second criterion for binding-time correctness is that when a stage1 is complete, ho subterm 
occurrences that are marked as eliminable remain. In our case, the subterm occurrences in the 
scope of a box constructor are code to be executed at a later stage and are therefore considered 
persistent] all other term occurrences are considered eliminable. Completing a stage means reducing 
a term until it can not be further reduced by the rules of the judgment E \—> E'. We call such 
terms irreducible to avoid confusion with subtly different notions such as head-normal form or weak 
head-normal form. Note that an irreducible term could still contain a "redex" in the traditional 
sense underneath a box constructor. Since we only evaluate closed terms, the following theorem 
expresses that our language satisfies the second critierion for binding-time correctness. 

Theorem 5 (Eliminability) If •; • P E : DA and E ^->* E' and E' is irreducible, then E' 
contains no eliminable term occurrences. 

Proof: By subject reduction, •; • P E' : DA. By inversion, and the fact that E' is irreducible, E' 
must have the form box E'Q for some E'0. Therefore all subterm occurrences in E' are in the scope 
of a box constructor and hence persistent. □ 

Thus, it appears that Palsberg's two properties both follow relatively easily from subject re- 
duction for A^D. However, there is still more to consider, because it is possible that eliminable 
subterms could reduce to persistent terms. This is ruled out syntactically in the two-level language 
studied by Palsberg, but in our case we need to show this explicitly. To argue about "images under 
reduction" we temporarily extend Ar*n with labels. 

Terms   E   ::=   ■ ■ ■ \ El 

Labels have no impact on typing and can be reduced away. 

A;T\-e E:A 
LB 

A;TF El : A 

El i—>E 
unlabel 

Recall that there is no congruence rule for box so that the rule unlabel can not be applied to a 
label in the scope of a box constructor. 

Now suppose Ei and E2 differ only in that some subterms of Ex have been labelled in E2. Then 
typing and reduction correspond between Ex and E2. That is, A; V K Ex : A iff A; T P E2 : A, and 
£1 .—»* E[ iff E2 ^->* E2 where E[ and E2 differ only in their labelling. This allows us to trace 
the "images under reduction" of eliminable parts of an unlabelled term by labelling all persistent 
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subterm occurrences. The following theorem then expresses that only persistent parts of a term 
can yield persistent images. Here, for every subterm occurrence of the form El, both E and El are 
considered to be labelled with I. No other subterm occurrences are considered labelled. 

Theorem 6 (Persistence) If A; T K E : A, all persistent subterm occurrences of E are labelled 
with I, and Et-.—YE', then all persistent subterm occurrences of E' are labelled with I. 

Proof: By induction on the derivation of E \—Y E'. 
Case: 

{\x:A. E2)E1 .—>• {Exlx\E2 

The result follows because the modal restriction in the typing rules does not allow x to appear in 
E2 

m a position enclosed by a box constructor. Formally, this case requires an auxiliary induction 
on E2. 
Case: 

aß . 
let box u = box E\ in E2 •—Y [Ei/u]E2 

The result follows because every subterm in E\ is labelled with I. 
Case: 

E2 i—Y E2 
 cong_letbox2 
let box u = E\ in E2 \—Y let box u — Ei'va. E2 

The result follows immediately by the induction hypothesis. 
The other congruence cases are similar.  If there were a congruence for box, that case would 

fail. 
Case: 

 unlabel 
E H->£ 

The result is immediate, since E is not enclosed by box and therefore not persistent. 
D 

Interpreted as a statement about code manipulation during evaluation, this theorems says that 
we can never construct code from terms which were not originally code. This is one of the essential 
properties of A^D which makes it a suitable basis for languages allowing explicit code manipulation. 

There is a dual property to persistence which is also enforced syntactically in the languages 
studied by Palsberg, namely that the eliminable parts of terms in the result of reduction only 
appear as the images of the eliminable parts of the original term. It is an important aspect of A^D 

is that it does not have this property, as shown by the counterexample: 

let box u = box E in u   \—Y E 

E appears in a persistent (or code) position on the left, but in an eliminable (or value) position 
on the right. From the point of view of code manipulation it is easy to explain why this is allowed. 
In the languages we are interested in, the code representation for E can be evaluated to return a 
value for E, which stands in constrast to the languages studied by Palsberg. 
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Evaluation of code is expressed in A^D by occurrences of code variables u which are not enclosed 
by a box constructor. From a logical point of view, such instances correspond exactly to proofs 
which depend on the reflexivity of the Kripke reachability relation for modal S4. If we modify 
the rules to disallow such instances, we obtain the modal logic KA and a corresponding modal 
A-calculus which is somewhat closer to the two-level languages studied by Palsberg. If we also 
remove the transitivity of reachability from K4, weobtairi the modal logic''/*: and a corresponding 
modal A-calculus which removes another feature of A^D that is not present in two-level languages, 
namely the ability to substitute code directly into code which is itself part of a code expression. So 
the following function from A^D would no longer be well-typed. 

(Xx-.HA. let box u = box E in box box u) : DA -* DDA 

Allowing this feature in A^D seems reasonable and useful, though perhaps not as important 
as the inclusion of evaluation of code. We will come back to languages based on modal K later 
in Section 6, where we will briefly explain an exact correspondence between such languages and 
multi-level generalizations of two-level languages. 

3    Modal Mini-ML: Explicit Formulation 

This section presents Mini-ML°, a language that combines some elements of Mini-ML [CDDK86] 
with the A^D-calculus of the previous section. For the sake of simplicity Mini-ML° is explicitly 
typed. ML-style or explicit polymorphism can also be added in a straightforward manner; we omit 
the details here in order to concentrate on the essential issues. 

We present an operational semantics for the language, and demonstrate some basic properties 
such as type preservation. We also demonstrate the strong staging properties of the language. 
In the description of the operational semantics we choose the usual device of representing values 
(including code) by corresponding source expressions. This may be refined in different ways for 
lower-level semantics describing, for example, run-time code generation or partial evaluation. 

3.1 Syntax 

Types A   ::=   nat | Ax ->• A2 \ Ax x A2 | 1 | DA 
Terms E   ::=   x\ Xx:A. E \ Ei E2 

| u | box E | let box u = E± in E2 

I (EUE2) |fst£|snd£ 

K) 
| z | s E | (case Ex of z =$► E2 \ s x =» E3) 
I fix x:A. E 

Ordinary Contexts    T    ::=   -|r, *:A 
Modal Contexts        A   ::=   • | A, u:A 

This language extends the one in the previous section, and we continue to use the conventions 
introduced in that section. 

3.2 Typing Rules 

Our typing rules for the Mini-ML fragment of the explicit language are completely standard, and 
we follow the previous section for the modal fragment. 
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A; T P E : A    E has type A in modal context A and ordinary context T. 

Functions 

x:A in T 
tpe_ovar 

A;(T,x:A)he E:B 

A;T PiiA" A; T P \x:A. E:A^B 

A; T P Ei : B -> A A; T P E2 : E 

tpeJam 

A; r P Ei E2 : A 
tpe_app 

Code 

u:A in A 
tpe_mvar 

A; T P u : A 

A; r P Ej : DA 

A; • P £ : A 

A;rPbox£:DA 

(A,u:A);The E2:B 

tpe_box 

A; T P let box u = E: in E2 : B 
tpe_let_box 

Products 

A; r P Ei : Ai A; T P E2 : A2 

A;rP(Ei,E2):AixA2 

tpe_pair 

A; T P E : Ai x A2 A; V P E : Ai x A2 
tpe.fst _  ;—^—— tpe_snd 

A; T P fst E : Ai A; T P snd E : A2 

A; T P () : 1 
tpe.unit 

Natural Numbers 

tpe_z 
A; T P E : nat 

tpe_s 
A; T P z : nat A; Y P s E : nat 

A; T P Ei : nat    A; T P E2 : A    A; (r, z:nat) P E3 : A 

A; T P (case Ei of z =*> E2 I s a; =$• E3) : A 
tpe_case 

Recursion 

A;I>:APE: A 

A; TP fix x-.A.E: A 
tpe_fix 
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As before, there is only one rule which introduces variables into the modal context (here called 
tpe_let_box). 

3.3    Operational Semantics 

The Mini-ML fragment of our system has a standard call-by-value operational semantics. For the 
modal part, we represent code for E simply by box E, making the least commitment concerning 
lower-level implementations. 

Values   V   ::=   Xx:A. E | (Vu V2) | () | z | s V | box E 

We evaluate let box x = E1'm E2 by substituting the code generated by evaluating Ex for x in E2 

and then evaluating E2. The code generated by Ex may then be evaluated during the evaluation of 
E2 as necessary. On the A-calculus and modal fragments our semantics corresponds to a reduction 
strategy for A^D. 

E M- V    Expression E evaluates to value V. 

Functions 

Code 

Products 

evJam 
Xx:A. E <-* \x:A. E 

Ei «^ \x. E[        E2 *-*■ V2        [V2/x]E[ «-> V 

EiE2^V 
ev_app 

ev_box 
box E M- box E 

Ex M- box E[    [E[/u]E2 <-* V2 

let box u = Ei in E2 <->>■ V2 
ev_let_box 

Ex ^Vi £W V2 
 — ev_pair 

<£?i,f?2>^<Vi,F2> 

E^{VUV2) £4(Ki,V2) 
~7-~Z r— ev_fst ev_snd 
fst E^V1 snd E «-* F2 

<wT)ev-unit 
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Natural Numbers 

E^V 
ev_z  ev_s 

Ex^z E2^V 

(case Ei of z =» E2 I s a; =» £3) ^4 V 

£1 <-» s V/ tV//s]£3 ^ V 

(case £"i of z =4> E2 I s a; =» E3) M- V 

ev_case_z 

ev_case_s 

Recursion 

[fix a. #/a:]£7 «^ V 
 ev_f ix 

fixx.E^V 

The structural and substitution properties for A^D extend to Mini-ML° in a completely straight- 
forward way, and we will make use of it below. We restate only the substitution lemma. 

Lemma 7 (Substitution) 

1. J/A;rP Ei : A and A;{T,x:A,T')F E2 : B then A;(r,r')K [E1/x]E2:B. 

2. If A; • P Ex: A and (A, u:A, A'); T P E2 : B then (A, A'); T K [£i/u]£2 : 5. 

Proof: By straightforward inductions on the typing derivations for E2. D 

Theorem 8 (Determinacy and Type Preservation) 

1. IfE'-tV then V is a value. 

2. If E w- V and E <-$■ V then V = V (modulo renaming of bound variables). 

3. IfE^Vand-;-^E:A then •; • K V : A. 

Proof: By inductions over the structure of the derivation V of E *-* V.  The cases for the non- 
modal part are completely standard. The cases for ev_box are trivial and those for ev_let_box are 
straightforward for value soundness and determinacy. We thus show only the ev_!et_box case in the 
proof of type preservation. 
Case: 

X»! V2 

v=    Ei^+ box E[       [E[/u]E2 ^ V2 

let box u = E\ in E2 «-»■ V2 

ev_let_box 

•; • K Ei : OB and 
u:A; • F E2 : A by inversion 

• K box £?( : Dß by ind. hyp. 
• P £"( : ß by inversion 
• K [E[/u]E2 : A by substitution lemma 
■^ V2 : A by ind. hyp. 
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D 

-*■□ 
e 

Since our semantics for Mini-ML° is a the natural extension of a reduction strategy for Ae 

the staging correctness results in Section 2 carry over to Mini-ML°. We now briefly discuss'the 
staging captured in Mini-ML° in informal terms. 

Suppose that •; • K E : OA and J5,-<-4 V. By value soundness and type preservation we have 
V = box E'. Thus the result consists only of residual code to be executed in the next stage. 
Further, by the modal restrictions, only terms enclosed by box constructors are ever substituted 
into other box constructors. As a result, the parts of the original program E not enclosed by any 
box constructor can be designated eliminable (static) since they will not appear in the residual 
code £". 

Further, the body of a box constructor can be considered persistent (dynamic) in the sense that 
we do not evaluate underneath the box constructor. The only way for evaluation to proceed to the 
body of the box constructor is by using the variable bound by a let box elimination construct to 
indicate where the delayed computation should be performed. 

3.4    Example: The Power Function in Explicit Form 

We now define the power function in Mini-ML° in such a way that it has type nat -4 D(nat -4 nat), 
assuming a closed term times:nat -4 nat -4 nat (definable in the Mini-ML fragment in the standard 
way). 

power = fix p:nat -4 D(nat -4 nat). 
Xn:nat. case n 

of z   =>• box (Aa::nat. s z) 
I  s m=>- let box q — p min 

box (Azrnat. times x (q x)) 

The type nat -4 D(nat -4 nat) expresses that power evaluates everything that depends on the 
first argument of type nat (the exponent) and returns residual code of type D(nat -4 nat). Indeed, 
we calculate with our operational semantics: 

power z «-» box (Aa::nat. s z) 
power (s z) M- box (Az:nat. times x ((Ax:nat. s z)x)) 

power (s (s z)) <-4 box (Az:nat. times x 
((Aa::nat. times x ((Aa;:nat. s z)x))x)) 

Modulo some trivial redices of variables for variables, this is the result we would expect from the 
partial evaluation of the power function. 

3.5    Implementation Issues 

The operational semantics of Mini-ML° may be implemented by a translation into pure Mini-ML, 
by the mapping: 

DA i-> 1->A 
box E 1-4  Xx:l. E        (where x not free in E) 

let box u = Ex in E2 ^4  (Xx:l -> A. [x {)/u]E2) E1        (where x not in free E2) 

It may then appear that the modal fragment of Mini-ML° is redundant. Note, however, that 
the type 1 -4 A does not express any binding-time properties, while UA does. It is precisely this 
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distinction which makes Mini-ML° interesting: The type checker will reject programs which may 
execute correctly, but for which the desired binding-time separation is violated. Without the modal 
operator, this property cannot be expressed and consequently not checked. 

A more efficient implementation method would be to interpret DA as a datatype representing 
code that calculates a value of type A. The representation must support substitution of one 
code fragment into" another, as requited by the ev_let_box rule. If the code is machine code, this 
naturally leads to the idea of templates, as used in run-time code generation (see [KEH93]). For 
many applications this code would instead be source expressions or some intermediate language, 
thus allowing optimization after code substitution, as in partial evaluation [JGS93]. In our own 
experiments in run-time code generation [WLPD98, WLP98], following ideas in [LL94, LL96], 
expressions of type DA are compiled into generating extensions which emit machine code at run- 
time and then jump to it to effect evaluation. References to free code variables then represent calls 
from one generator to another. 

4    A Kripke-Style Modal A-Calculus 

The modal logic in Section 2 was motivated by the goal to capture validity. A valid proposition is 
one with a closed proof term, and closed proof terms correspond to code which can be explicitly 
manipulated and safely evaluated. 

In this section we construct a modal logic based on Kripke's multiple-world interpretation of 
modal logic [Kri63]. A world corresponds to a stage of computation during evaluation. A value 
computed at a given stage of computation is available in all accessible stages, according to the 
accessibility relation between worlds of the Kripke semantics. Subtly different modal logics arise, 
depending on the properties of the accessibility relation between worlds. They are captured by 
structural rules built into the elimination rule for necessity (dE). In its most general form, we 
exactly capture validity and thereby the intuitionistic modal logic S4 presented in Section 2. 

Our rules constitute a simplification of the system \~*a in [PW95] and [DP96]. In particular we 
have replaced the structural rule pop by a more general form of elimination which can be motivated 
from the perspective of pure natural deduction. 

We prove the correctness of our system by relating it to the natural deduction system for S4 
presented in Section 2 via two translations between proof terms. In Section 5 we extend this 
formulation of modal logic to Mini-MLD, which leads to a staged programming style akin to Lisp's 
quasiquote, unquote, and eval. Instead of giving a direct operational semantics for this language 
we present a type preserving compilation to the explicit language from Section 3. We give an 
embedding of a two-level language [NN92] into our language in Section 6. 

4.1    A Kripke-Style Natural Deduction System 

In Kripke's interpretation of modal logic, the truth of a proposition is relativized to a world. Modal 
operators allow us to reason about the truth of a proposition in all worlds accessible from the current 
world. Imposing laws on the accessibility relation between worlds (such as reflexivity, transitivity, 
or symmetry) leads to different modal logics. A world in the sense of Kripke is represented by 
a context of hypotheses containing propositions we know to be true in this world. Based on this 
intuition, our main judgment has the form 

ri;r2;...;rnPA 
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which expresses that A is true in the current world rn. Furthermore, I1! represents hypotheses true 
in some initial world, T2 represents the hypotheses true in an arbitrary world reachable from rx, 
and so on. 

From the functional point of view, I\- binds variables available at stage i of the computation, 
where the proof term assigned to A may be executed at stage n. We refer to Ti;.. .;Tn as the 
world stack or context stack sinceworlds are related to contexts by the Curry-Howard isomorphism. 
Note that there will always be at least one context in the context stack: the current world. We 
abbreviate (a possibly empty) context stack by *. 

As in Section 2 we now systematically develop a system of natural deduction for this judgment 
which includes proof terms. First, only the hypotheses in the current world are available to derive 
the conclusion.. 

x:A in T 
 var 
*; T P x : A 

The substitution principle applies to arbitrary worlds, as long as we establish truth in the 
appropriate world. 

Substitution Principle 
//*; T\iM1:A and *; (r, x:A, V); *' P M2 : C then *; (r, T'); *' P [M1/x]M2 : C. 

In the special case that *' is empty, the current worlds in both given derivations coincide. We 
will formally demonstrate this property of the system later. 

There are two kinds of structural properties. First, we have exchange, weakening and contraction 
within each world in the world stack. We will not formally restate this. Second, depending on the 
properties of the accessibility relation, we might have some structural properties on the world stack. 
In K we have none. If we add reflexivity of the accessibility relation, we reason as follows: If we 
have a jugdment 

*; T; r'; f'PM:C 

then T' contains hypotheses assumed to be true in an arbitrary world accessible from T.  But T 
itself is accessible from T (by reflexivity), so C should still be true if we join T and V. 

f;(r,r');«P'PM':C 

Whether M' is different from M depends on how much information is present in the term itself, as 
we shall see later. We refer to this as modal fusion. 

For example, omitting proof terms, we read the judgment 

n(A-*B);A\*B 

as 

Ifn(A -> B) is true in some world Wi and A is true in an arbitrary world w2 reachable 
from w\, then B is true in w2. 

If we assume reflexivity of the accessibility relation, we know that Wi is accessible from wu so we 
can infer from the above by replacing w2 with wx: 

IfD(A-^ B) is true in wi and A is true in wi then B is true in wx. 
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In symbolic form, we write this as 
D(A-&B),A\iB 

which is exactly the result of fusion applied to the first judgment. 
Next we add transitivity. Consider once again 

*; T; T'; $'PM:C. 

Then if we add an arbitrary world accessible from T from which I" can be reached, the judgment 
should continue to hold, because V is still accessible from T by transitivity. 

f;r;.;r';f'PM':C 

Again, M' may be identical to M or it can be directly created from M, depending how much 
information we represent in proof terms. We refer to this property as modal weakening. Note that 
by ordinary weakening, the new interposed world may also contain arbitrary assumptions without 
invalidating the judgment. 

Now we define the connectives via their introduction and elimination rules.  Implication only 
affects the current world and is similar to what we have presented in Section 2. 

V;(r,x:A) P M : B 

f;TP Xx:A. M : A -> B 

$;rPM:A^5 *; Y P N : A 

f;TP MN :B 
E 

Local soundness and completeness also works as before. The corresponding operations on proof 
terms are the familiar /^-reduction and ^-expansion. 

Recall that DA should be true in the current world if A is true in every reachable world. Since 
we have no information about the reachable worlds, we have no hypotheses about the truth of 
propositions in this world. Hence the introduction rule reads 

*; T; • P M : A 
 Dl 
*;TP box M :UA 

The corresponding elimination rule states that if OA is true in the current world, A must be 
true in every reachable world. Which worlds are reachable depends, of course, on the accessibility 
relation for the modal logic under consideration. In its most general form (S4), the elimination rule 
reads 

*;rPM:DA 
 DE 
*; T; Tx;...; r„ P unbox« M : A 

Note that Ti is always accessible from T, so in K we only have unboxi. The worlds T2,...,Tn 

are accessible from T only because of transitivity, so in modal logic with transitivity we also have 
unboxn for n > 1. T is accessible from itself in a modal logic whose accessibility relation is reflexive, 
so there we also have unboxo- 

Next we consider local soundness and completeness of the rules for the modal operator. Recall 
that soundness requires that an introduction rule followed by an elimination rule can be reduced 
to a direct derivation of the judgment. 
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V 
$;r;.PM:A 

DI __ V 
*;rPboxM:Di ^   f;r;ri;...;rBPM':i 

DE 
*; T; Ti;...; T„ P unboxn (box M) : A 

where V and M' exist by the structural properties of world stacks (modal fusion in the case that 
n = 0, ordinary weakening in the case the n = 1, and ordinary weakening and n - 1 applications 
of modal weakening in the case that n > 1). 

Local completeness is a bit simpler. We have the following ^-expansion: 

V 

V 
f;rPM:D4 

•DE 
*;rPM:DA $;r; • P unboXl M : A 

 : D| 
*; T P box (unboxj M) : üA 

We postpone a more formal discussion of the rules for /3-reduction and 77-expansion on terms to 
Section 4.4. 

There are two simple and consistent variations on this system. 
The first arises from an analysis of local completeness: one can see that only unboxx is nec- 

essary. The others (which are locally sound!) have been incorporated so that we need no explicit 
structural rules. However, unboxj plus explicit rules for modal fusion and weakening also make a 
sensible system with the same derivable judgments. For our purposes, a formulation without explicit 
structural rules is preferable, since it allows more compact programs and a simpler meta-theory. 

In the second variant we replace the constructor unbox„ simply by unbox. This would mean 
that M' = M in the local reduction for D, and terms remain invariant under structural transfor- 
mation of contexts. This more streamlined presentation of the calculus is not appropriate for our 
application, since the the index n in a term unboxnM constructor determines the stage at which 
M is to be evaluated. Without the index, this would be ambiguous and depend on the typing 
derivation. In other words, the system would not be coherent. 

4.2    Syntax 

We summarize the syntax of the pure fragment. 

Types A   : :=   Ai -+ A2 | aA 
Terms M   : :=   x | \x:A. M \M1M2\ box M \ unbox„ 
Contexts r   : :=    -\T,x:A 
Context Stacks *    : :=    -|*;r 

4.3    Natural Deduction Judgment 

We summarize the rules defining the main judgment, *; T P M : A as motivated and developed in 
Section 4.1. 
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x:A in T 
var 

f;(r,rA)PM:B 

*;rPs:4 *; T P Az.vl. M : A -» S 

f;rPM:A^B $;rPiV:i 

*;rPMJV:B 

*;r;-PM: A 

*;rPbox M: DA 
D| 

$;rPM:Dyl 

-+I 

*; f; Ti;...; T„ P unboxn M : ,4 
DE 

4.4    Properties of the Kripke-style A-calculus 

Structural transformations change the nature of the proof term by relabelling indices to the unbox 
constructor. Such a relabelling is also necessary to write out the rules /^-reduction and 77-expansion 
We define {n/m}M inductively on the structure of M. 

{n/m}x = x 
{n/m}Xx:A. M = Xx:A. {n/m}M 

{n/m}M1M2 = ({n/m}Mi) ({n/m}M2) 
{rc/m}boxM = box {n/m+1}M 

{n/m}unboXpM = unboxp {n/m — p}M 
=    unboxp-|_„_i M 

for p < m 
for p > m 

This operation now allows us to state the substitution and structural transformation properties. 

Lemma 9 (Modal Structural Transformation) 
//*;ro;Ai;---;AmPM:v4 ^en*;r0;---;(r„,A1);---;AmP{n/m}M:A. 

Proof: By induction over the structure of the given derivation V of IP; To; Ax;...; Am. In each 
case except for DE we immediately apply the induction hypothesis and reconstruct an appropriate 
derivation from the results. In the case of DE we distinguish two subcases. 

Case: 

for p < m. Then 

*;r0;.. 
*;r0;.. 
*;r0;.. 

(r„,Ai);. 
(rn,Ax);. 
(r„,Ax);. 

T>i 

v=      *;ro;Ai;...;Am_pPMx :DA 

*; T0; Ax;...; ATO P unboxpMx : A 

Am_? P {n/m - p]Mx : DA 
Am P unboxp{n/m — p}M\ : A 
Am P {n/m}unboXj,Mx : A 

DE 

by ind. hyp. 
by rule DE 

by definition of {n/m} 
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Case: 

27 = ^Gp^P'M^öA 
•DE 

*';©p_m;...;0o;Ai;...Am P unbox^Mi : A 

for p > TO where # = #';.••; ©1 and 0O = T0. Then 

*';öp-m;--.;©o;ri;...;(rn, Ai);...Am P unboxp+n_!Mi : A by rule DE applied to Vx 

*;r0;...;(r„,Ai);...;ATO P {n/m}unboxpMi : A by definition of $, ©0 and {n/m}. 

The system also satisfies the usual structural properties of exchange, weakening and contraction 
in each of the contexts in the context stack. We only state the substitution property formally. 

Lemma 10 (Substitution) 
If 9; rPM,:i and V- (T, x:A, T'); *' P M2 : C then *; (r, T); *' P [M1/x]M2 : C. 

Proof: By induction over the structure of the derivation of *; (r, x:A, T'); *' P M2:C. D 

Then we have the rules of /3-reduction and ^-expansion, corresponding to local reduction and 
expansion in natural deduction. 

(\x:A. M)N A [N/x]M 

M:Al^A2 iA Xx-.At.Mx 

unboxn(boxM) A {n/l}M 

M:D4 ^ box (unboxi M) 

Theorem 11 (Subject Reduction and Expansion) 

1. //*; T P M : A and M A M' then *;T P M' : A. 

2. IfV;r^M:AandM:A^-> M' then *; T P M' : A 

Proof: In each case we apply inversion to the given typing derivation. For subject reduction 
we then either use modal structural transformation (Lemma 9) or substitution (Lemma 10). For 
subject expansion we directly construct a derivation of the conclusion, using weakening if necessary. 
□ 

4.5    Environments and Environment Stacks 

In order to prove that the explicit and implicit formulations of S4 correspond, we need to de- 
velop some properties of environments and environment stacks. Roughly, an environment provides 
definitions for the modal variables available at a particular stage of the computation, while an 
environment stack extends this to all stages of a computation. 

We define environments and stacks which bind patterns of the form box u to explicit terms E. 

Environments p   ::=    • | p, box u — E 
Environment Stacks   R   ::=   Q \ R-p 
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The translations between the A-calculi based on validity and multiple worlds require us to 
relate context pairs A;T to context stacks \P. This is achieved by the following typing judgments 
for environments and environment stacks. The latter ties in the context stacks of the implicit 
system. We use 0 to range over modal contexts. 

A;T h6 p : 0Environment p matches G in contexts A and T     : 
\P (=? R : A    Environment stack R matches A in context stack \P 

tpv .empty 
A;TP 

A;Thep:@ (A,0);r he E : UA 

A; T P (p, box u = E) : (0, u:A) 

 tpr_empty 

* ^e R : A A; T P p : 0 

tpv_bind 

V;T¥(R;p):(A,®) 
tpr_env 

We will tacitly use weakening for typing of environment stacks, which directly follows from 
weakening on the typing judgment for the explicit modal A-calculus. We also need to use the 
following property. 

Lemma 12 (Environment Extension) 
J/#;r \=S (R;p) : A and A;T\^ E: DA thent>;T |=? (R; p, box u = E) : (A,u:A). 

Proof: By inversion on the derivation for (R; p) followed by a straightforward application of the 
typing rules for environments and environment stacks. D 

4.6    Translation from Explicit System 

In this section we show that if A is true in the explicit system then A is also true in the implicit 
system. We show this by giving a translation on proof terms. The difficulty in defining and proving 
the correctness of this translation lies in the relation between the modal and ordinary contexts on 
the explicit side and the context stack on the implicit side. This relationship can be maintained 
via the environment stacks defined in the preceding section. 

R; p\> E i-> M    Expression E translates to M in environment stack R; p 

This judgment is defined by the following rules. 
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R;p> E>-> M 
tx.ovar ■ txJam 

R;p\>x\-+x R;p o \x:A. E *-+ \x:A. M 

" R\p't>E'iV4M1 R:,p\>E2^'M2  "   '  ; 

 tx_app 
R; p > Ei E2 >->■ Mi M2 

R;p;-> £4 M 
tx_box 

txJetbox 

R; p D> box £" M- box M 

-R; p, box w = Ej o £^2 i-)- M 

R;p> let box u = E± in E2 i-t M 

R;p'n>E^M 

R; (p'n, box B = £)p^);.";^0>!i4 unboxnM 
tx_mvar 

Theorem 13 (Translation from Explicit System) 
Given *; T |=? (Ä; p) : A and A; T P .E : A. 

i.  T/jere is a unique M such that R; p > £" H-> M. 

5.  Whenever R;p>E^ M then $;rPM:l 

Proof: Proposition 1 is proven by induction on the multiset extension of the subterm ordering of 
expressions in R; p and E. For the case of a modal variable u we need to use the typing assumption 
to guarantee that tx_mvar applies, that is, that the environment stack contains an appropriate 
definition of u. 

Proposition 2 is proven by induction on the structure of the derivation of R; p > E y-+ M, 
applying inversion to the given typing derivations. In the case of modal variables u we have an 
auxiliary induction on the world index n. 

We now show the proof of Proposition 2 in more detail. We assume we are given derivations 

VST 
V;T^(R;p):A      and      A;T^E:A      and      R;p>E^M 

We proceed by induction on the structure of T, applying inversion to the typing derivations as 
needed in order to construct a derivation 

V 
$;rPM:i 

Case: 

_    tx_ovar 
' —   R;p\> x \-^ x 

A; 1 r x : A by assumption 
X,A m * by inversion 
V; 1 r x : A ky ruje var 
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Case: 

r = 
r2 

R; p \> E2 \-> M2 

R;p\> Az:Ai. E2 *-> Xx:Ai. M2 

txJam 

A;TP \x:Ax.E2 : A 
A; T, x:Ai \* E2:A2 and A = 
#;I>:AiK (#;/>): A 
#;r,z:AiPM2:A2 

f;TI- Aa;:Ai. M2 : Ax ->• A2 

Ai A, 
by assumption 

by inversion 
by assumption and weakening 

by ind. hyp. 
by rule —> I 

Case:    tx_app is straightforward. 

Case: 

r = 
Ti 

R; p; • > Ei H-> Mi 

fi;/)t> box £^i i-> box Mi 
tx_box 

A; T P box E1 : A 
A; ■ P f?i : Ai and A = DAi 
*;rK(Ä;/>):A 
A;-F • :• 
*;r;-K(ß;p;-):A 
*; T; • P Mi : Ax 

*; T P box Mi : DAX 

by assumption 
by inversion 

by assumption 
by tpv_empty 

by tpr_env 
by ind. hyp. 

by □! 

Case: 

T = 

7i 
R; p, box u = Ei> E2\-^ M2 

 tx_letbox 
R; p > let box tt = £1 in £"2 i-> M2 

A; T P let box u = E1inE2:A 
A; T P ßi : DAi and 
(A,u:Ai);rP£2:A 
^;T^(R;p):A 
*; T |=? (Ä; p, box u = #i) : A, w:Aj 
*; T P M2 : A 

by assumption 

by inversion 
by assumption 
by Lemma 12 

by ind. hyp. 

Case: 

T = 

Ti 
Rn;p'n[>E'^M' 

Rn; (p'n, box u = E',p");--';p0>ut-+ unboxnM' 
tx_mvar 
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A; 1 r u : A by assumption 
u : A in A by inversion 
*; r0 |=? Ä„; (pjj, box « = e', ^'); • • •; p0 : A for T0 = T and p0 = p by assumption 

A = An+1,en,...,e0, 
$„ |=? Kn ::An+i, arid"' « 
A„+i; Tn P (/>;, box « = E', O : Gn by inversion 
A„+i; rn K (/>;, box « = £'): 0^, t*:A' and Gn = Q'n, u:A', Q», 
An+1;r„P^:e;and 
(An+i, ö„); r„ r £" : DA by further inversion 
■n- — si since w : A in A is unique 
*n',in F [Rn'iPn) '■ An+i,©n by ruje tpr_env 
*„;rBKM':DA by ind. hyp. 
*n; rn;...; r0 K unboxnM' : A by rule DE 

D 

4.7    Translation to Explicit System 

To show that every proposition judged true in the implicit system is also true in the explicit 
system, we give another type-preserving translation on proof terms. This translation is the core of 
the compilation function we consider in Section 5.4. Again, the difficulty lies mainly in relating the 
context stack of the implicit system to the modal and ordinary contexts of the explicit systems. 

The translation recursively extracts terms inside unboxn constructors and binds their transla- 
tion to new variables, bound with a let box outside the nth enclosing box constructor. Variables 
thus bound occur exactly once. 

We abstract over an environment by means of nested let box expressions. 

Let(-)(E) = E 
Let(p, box u = E')(E) = Let(p)(let box u = E' in E) 

We require a few straightforward properties of environments, but we explicitly state only the derived 
typing rule for environment abstractions. 

A;rhep:0 (A,Q);The E:B 
 tpLenv 

A;TheLet{p)(E):B 

The merge operation Ri \ R2 on environment stacks appends corresponding environments. We 
assume that the domains of the environments in Rx and R2 are disjoint so that the resulting 
environment stack is valid. 

©|Ä2    =    #2 
Ri I ©   =   Ri 

(Ri;pi)\(R2iP2)  =   (RI\R2);(PI,P2) 

The translation is defined by the judgment 

M I-)- Rt> E    M compiles to term E under stack R 
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It is defined by the following rules. 

x \-t © t> x 
tr_var 

M4 R> E 

Xx:A. M 1-4- R\> Xx:A. E 
trJam 

Mi i->- .Ri \> Ei M2 i-> -R2 > E2 

Mi M2 M- (Äi | R2) > #i £2 

tr_app 

MH^OOE" 

box M H> © > box £" 
tr_boxO 

M H- (Ä; j>) > £7' 

box M4fit> Let (p) (box J5) 
tr_boxl 

M^R\>E 

unboxo M i-> i? [> let box u = JE? in « 
tr_unboxO 

MM-ßoE1 

unboxn+i M i-> R; (box M = E); 
tr_unboxl 

■\>u 

The tr_app rule is restricted to context stacks Ri and R2 with disjoint domains. This can always 
be achieved by renaming of variables in the derivations of the two premisses. 

Theorem 14 (Translation to Explicit System) 

1. For any M there exist unique R and E such that M i-> R> E. 

2. IfM^Rt>Eandty;TPM:A then for some A we have # (=? R : A and A; T P E : A. 

Proof: Proposition 1 is straightforward, since the translation is defined structurally on M with 
unique results (modulo renaming of bound variables, of course), except in the case of box M, where 
exactly one of tr_boxO and tr_boxl apply. 

Proposition 2 follows by induction on the structure of the derivation T of M t-t R \> E. The 
proof requires a few simple lemmas such as weakening for P and some immediate properties of 
Ri | R2 and Let(p)(E) which we do not state here explicitly. We omit the cases for the non-modal 
constructors, which are straightforward. 

Case: 

Ti 

T = Ml H* 0 > #1 

box Mi 1-4- 0 O box Ei 

*; T P box Mi : A 
*; T; • P Mi : Ax and A = DAj 
*;T (=?© : Ai and 
Ai; • P Ei : Ax for some Ai 

Ai = - 
*K©:- 
•; T P box Ex : DAi 

tr_boxO 

by assumption 
by inversion 

by ind. hyp. 
by inversion 

by tpr_empty 
by oi 

The last two lines are the desired conclusions for A = 
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Case: 

7": 
Tl 

Mi H- (R; p) > f?i 

box Mi ■->• ß > Let (p) (box E^) 
tr_boxl 

*;rP'boxMi -A 
*; T; • H Mi : Ax and A = DAX 

*; r |=? (Ä; p) : Ax and 
Ai; • P Ei : Ai for some Ai 
* (=* Ä : Ai and 
Ai;rPp:Gand Ai = Ai,0 
(A'1,e);rKboxE1:DAi 
Ai; T P Let(p)(box #x) : DAj 

Now we have the desired conclusions with A = A[. 

Case: 

r ■ 
Ti 

Mi H-> Ri > E1! 

unboxo Mi i-> fl > let box u = Ei in u 
tr_unboxO 

*; T P unboxo Mi : A 
*; r P Mi : DA 
$ |=? R : Ai and 
Ai; r P Ei : DA for some Aj 
(Ai,u:A);T^u:A 
Ai; T P let box u = Ei in u : A 

Now we have the desired conclusions with A = Ax. 

Case: 

T 

Ti 
Mi i-> R\>Ei 

unboxn+i Mi i-> R; (box ti = \Ei); •;...;■ >i 
tr_unboxl 

by assumption 
by inversion 

by ind. hyp. 

by inversion 
by rule D| 

by rule tpLenv 

by assumption 
by inversion 

by ind. hyp. 
by rule tpe_mvar 

by rule DE 

*; T P unboxn+1 Mi : DA 
*'; r' P Mi : DA and * = *'; V; Tj;...; Tn 

*' |=? R : Ai and 
Ai; r' P £?! : DA for some Aa 

Ai;r'P (boxu = £) :(«: A) 
*'; T' (=? (Ä; box « = Ei) : (A2, u:A) 
*'; F; Ti;...; rn |=F (Ä; box « = £; •;...;•) : (Ai, u:A) 
(Ai,M:A);rp«:A 

Now we have the desired conclusions for A = Ai, u:A. 

by assumption 
by inversion 

by ind. hyp. 
by rule tpv.bind 
by rule tpr_env 

by n applications of tpr_env 
by tpe_mvar 

D 
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5    Modal Mini-ML: Implicit Formulation 

We now define Mini-MLD, an "implicit" formulation of modal Mini-ML generalizing the A-calculus 
core from the preceding section. The main advantage of this system over the explicit language is 
that altering, the staging of a computation in a given program often only requires the insertion or 
deletion of modal constructors. In contrast, Mini-ML^1 requires that the structure of the program 
exactly mirror the staging, since the only way to refer to results from a previous stage is via code 
variables. Using let (a derived form in our fragment) to bind code variables we can still express 
staging more explicitly in Mini-ML° if we prefer; it is now a matter of style rather than a property 
enforced in the language. 

Another motivation for Mini-MLD is that it can be directly related to the two-level A-calculus 
(see Section 6) which would be much more difficult for Mini-ML ° due to the different syntactic 
structuring required. Further, Mini-MLD is very similar to the quasi-quoting and eval mechanisms 
in LISP, which are relatively intuitive in practice. We believe that with some syntactic sugar along 
the lines of Scheme's backquote and comma notation (as in the regular expression example in Section 
7.3), Mini-MLD is a practical and theoretically well-founded basis for an extension of Standard ML. 
Indeed, experience with the two languages PML [WLP98] and Meta-ML [TS97, TBS98, MTBS99] 
indicates that such languages are indeed practical. 

It may be helpful to consider the modal fragment of the implicit language to be a statically typed 
analog to the quasiquote mechanism in Scheme. Then box corresponds to quasiquote (') and 
unboxi to unquote (,). unboxo corresponds to eval. More generally, unbox„ corresponds to a 
generalized unquote which splices a quoted expression into a context with n levels of quasi-quoting. 
Note however that this analogy can also sometimes be misleading, and the actual behavior of code 
is closer to the quotations of a "semantically rationalized dialect" of Lisp called 2-Lisp [Smi84]. 

The operational semantics of the new system is given in terms of a type-preserving compilation 
to Mini-ML° which is a straightforward extension of the translation in Section 4.7. 

For some applications, such as emulating the two-level A-calculus, weaker modal logics such as 
K are sufficient, as described in Section 6.4. 

5.1 Syntax 

We extend the logic to the core of a programming language as in Section 3. 

Types     A   ::=   nat | Ai -» A2 \ A\ x A2 | 1 | OA 
Terms   M   ::=   x \ \x:A. M\MXM2 

| box M | unbox„ M 
j <Mi,M2)|fst Af |sndM 
10 
| z | s M | (case Mi of z =$■ M2 I s x => M3) 
j fix x:A. M 

Contexts T   ::=   -\T,x:A 
Context Stacks   *   ::=    • j *;P 

5.2 Typing Rules 

In this section we present typing rules for Mini-MLD using context stacks. The typing judgment 
has the form: 
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*; T P M : A    Term M has type A in local context T under stack \P. 

Intuitively, each element T' of the context stack $ corresponds to a computation stage. The 
variables declared in V are the ones whose values will be available during the corresponding eval- 
uation phase. When we encounter a term box M during typing we enter a new evaluation stage, 
since M will be frozen during evaluation of the current stage. In this new phase, we are not allowed 
to refer to variables of the prior phases, since they may not be available when box M is unfrozen 
using unbox„. Thus, variables may only be looked up in the current context Y (rule tpLvar) which 
is initialized as empty when we enter the body of a box (rule tpLbox). However, code generated in 
the current or earlier stages may be used, which is represented by the rule tpLunbox. 

Functions 

x:AmY       . f;(r,d)PI:B 
 : tP'-var        tpLlam 
^;T^x:A $;r P Xx:A. M : A -)■ B 

$;rPM:A-45 $; V P N : A 

ty;TV MN :B 
tpi_app 

Code 

*; T; • P M : A #; p P M : UA 
tpi_box      ■ tpi_unbox 

$;rPboxM:Di *; T; Ti;...; Tn   P unboxn M : A 

Products 

V;rPMi:Ai ^•T\iM2:A2 

V;Tti{M1,M2):A1xA2 

- tpLpair 

 : tpi_fst        tpi_snd 
*; T P fst M : Ax tf; T P snd M : A2 

tpi_unit 

Natural Numbers 

*;rP():l 

*; T P M : nat 
tpi-z        . tpi_s 

*;rPz:nat #;rPsM:nat 

$;r P Mj : nat    $;rPM2:A    fr; (r,z:nat) P M3 : A 

*; T P (case Mj of z => M2 | s x => M3) : A 
tpLcase 
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Recursion 

$;(r,rA)PM:A 
tpLfix 

*;rPfixx:i.M:i 

The reductions and expansions' from Section 4 remain valid in this extended setting, as do the 
structural rules. 

5.3 Examples in Implicit Form 

We now show how we can define the power function in Mini-MLD with a different syntactic structure 
than in Mini-ML°, though still with type nat —> D(nat —)■ nat). 

power = fix p:nat —> D(nat —> nat). 
An:nat. case n 

of z    =?■ box (Aa;:nat. s z) 
I   s m =^ box (Aa::nat. times x (unboxi (p m) x)) 

As another example, we show how to define a function of type nat —> dnat that returns a box'ed 
copy of its argument: 

liftnat — flx/:nat —> Gnat. 
Aa;:nat. case x 

of z   =$> box z 
I s x' =>■ box (s (unboxi (/ x'))) 

A similar term of type A —)■ ü A that returns a box'ed copy of its argument exists exactly when 
every —»■ in A is enclosed by a □. This justifies the inclusion of the lift primitive for base types in 
two-level languages such as in [GJ91], and it seems natural to include such a primitive in a realistic 
extension of our language, as in [WLP98]. 

5.4 Compilation to Explicit Language 

We do not define an operational semantics for Mini-MLD directly; instead we depend upon a 
translation to Mini-ML°. This extends the translation given in Section 4.7 in a straightforward 
way. We prefer this to a direct operational semantics on the implicit language since the translation 
should be identical to what a compiler would perform. We omit the obvious rules. 

As an example of the compilation, it maps the definition of power from Section 5.3 to the 
one in Section 3.4. Note that the restructuring achieved by the compiler is similar to a staging 
transformation [JS86]. 

The operational semantics induced by the translation is different from some obvious ones defined 
directly on Mini-MLD. In [MM94], for example, a simple reduction semantics is introduced for a 
system similar to the pure fragment of our implicit system. It does not reflect staging, and is instead 
used to prove a Church-Rosser theorem and strong normalization for a pure modal A-calculus. Sim- 
ilarly, in [PW95] an algorithm for converting pure modal A-terms in implicit form to long normal 
form is given and proven correct. This algorithm bears no resemblance to the staged computation 
achieved via Mini-ML°. We also have constructed a direct operational semantics for Mini-MLD 

generalizing [Hat95] that does capture staging, but prefer the compilation because it makes op- 
erational properties more evident. In particular, proving staging theorems for Mini-MLD directly 
would be much harder than taking advantage of the type-preserving compilation and proving the 
properties for Mini-ML°. 
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6    A Two-level Language 

In this section we define Mini-ML2, a two-level functional language very close to the one described 
in [NN92]. We then define a simple translation into Mini-MLD and prove that binding-time cor- 
rectness in Mini-ML2 is equivalent to modal correctness of the translation in Mini-MLD. 

A two-level language captures staging by, explicitly annotating'each occurrence, of .a term con- 
structor as compile-time (often called static) or run-time (often called dynamic). Traditionally, 
expression constructors which can be evaluated at compile-time are overlined, those which cannot 
be evaluated until run-time are underlined. The process of annotating each term constructor in an 
expression is called binding-time analysis. Of course, not every possible annotation is valid. For 
example, the expression 

Xx_ :nat. case a: of z =3> z | s y => s z 

is not binding-time correct, since x is not available until run-time, while the case statement is 
annotated to be executed at compile time, which is not possible. 

We will not discuss binding-time analysis in this paper, only show how the resulting two-level 
terms are related to modal Mini-ML in its multiple-world formulation from Section 5. 

Our language differs slightly from [NN92] in that we inject all run-time types into compile-time 
types, instead of just function types. This follows [GJ91], where there is no such restriction. Also, 
we find it convenient to divide the variables and contexts into run-time and compile-time. All other 
differences to [NN92] are due to minor differences between their underlying language and Mini-ML. 
Note that modal Mini-ML can accommodate arbitrary levels (not just two) and additional term 
operations (such as evaluation), so the two-level language we introduce in this section will be 
embedded into a relatively modest fragment of modal Mini-ML. 

6.1     Syntax 

Run-time Types r  ::= nat | rx 

Compile-time Types   a ::= nit | <j\ 
. T21 n X T2 11_ 
• <72 | <7j x <72 I 1 I r 

Terms 

Run-time Contexts T 
Compile-time Contexts   A 

x | XX:T. e | e\ @ e2 

fix X:T. e 
(fi, e2 _) | fet e | snd e 
z | s e 
(case ei of z =$■ e2 I s x =^ e3) 

y\_\y:a. e \ ex @ e2 

fix y:o. e 
(_ei,e2 ) | fst e | snd e 

0 
z I s e 
(case ej of z =^> e2 I s y =$> e3) 
\T,X:T 

\A,y:a 

As a simple example we consider the two-level version of the power function. 
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power = fix p : nat =F (nat —>■ nat). 
An : nit. case n 

of z    =>■ (Az :nat. s z) 
•■■-■•. I   s m => (Aa?:nat. times @ x @ ((p@ m) @ x)) 

Recall that times is a curried function for multiplication represented as a closed term for sim- 
plicity. The type indicates that power takes a natural number as a compile-time argument and 
computes a residual run-time function from nat to nat. Otherwise the structure is very similar to 
the power function in its implicit formulation from Section 5.3. As we will see in Section 6.3 we can 
translate this to Mini-MLD by inserting a box constructor when an immediate subexpression of 
a compile-time term (overlined) is a run-time term (underlined). Conversely, when a compile-time 
term appears as an immediate subexpression of a run-time term we insert an unboxi constructor. 
It is easy to see that in this example we obtain the power function in implicit form, exactly as in 
Section 5.3: 

power = fix p:nat —>■ D(nat A nat). *•■ 
Arc:nat. case n 

of z    =>• box (Aa;:nat. s z) 
I   s m =>• box (Aar:nat. times x (unboxi (p m) x)) 

6.2    Typing Rules 

The typing rules of the two-level A-calculus simultaneously verify staging and standard type- 
correctness, just as our explicit and implicit systems. We have two judgments: 

A;T F e : r    expression e has run-time type r 
A P e : a        expression e has compile-time type a 

A compile-time expression can never depend on a run-time variable. Therefore, compile-time typing 
depends only on a compile-time context. A run-time expression may have embedded compile-time 
subexpressions and therefore carries compile-time variables (in A) as well as run-time variables in 
r. 
Functions 

x-.TinT A;(r,x:r2) Fe : r 
tpr_var  tprJam 

A;T F x : T A;T F XX:T2. e:T2=±T 

A;rFei:r2=hr A;rFe2:r2 

A;TFei @e2 :r 
tpr_app 
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Products 

AiTKeiirx A;rFe2:r2 

A;TF (ei,e2 ) : n _x r2 

tpr_pair 

A; T F e : ri x r2 

A;rFfetc:ri 
tpr.fst 

A;TF e:TlXT2 

A;TF snd e : r2 

tpr_snd 

A;rF():l 
tpr_unit 

Natural Numbers 

■ tpr_z 
A;rFe:nat 

tpr_s 
A;rFz:nat   ' A;rFse:nat 

A;rFei:nat    A;rFe2:r    A;(T,x : nat) F e3 : r 

A; T F (case ej of z =^> e2 |s^^e3):r 
tpr_case 

Recursion 

A;(r,z:r)Fe:r 

A; T F fix x-.T.e-.T 
tpr_fix 

Phase Transitions 

A F e : r 

A;T F e : r 
down 

A; • F e : r 

A F e : r 
up 

Functions 

y:a in A 
 tpc_var 
AFy:cr 

A F ei : a2 =f a 

A, y:a2 F e : <7 

A F Ay:«r2. e : a2 =F a 

A F e2 : a2 

tpcJam 

A F ei @ e2 : <T 
tpc.app 

35 



Products 

A P ei : ffi A P e2 : o2 

A hc (ei,e2 ) : <?i X a2 

tpc_pair 

A l-c e : <7i x cr2                           A hc e : <7i X <T2 
 == tpc_fst tpc_snd 
A P fst e : <Ti A F snd e : <r2 

■tpc_unit 
AP():1 

Natural Numbers 

A hc e : nat  x tpc_z  —— tpc_s 

Recursion 

APzrnat A hc s e : nat 

A P ei : nät    A F e2 : a    A, y : rüt P e3 : er 

A F (case e\ of z =4> e2 | s y =^> eß) : a 

A,y:a F e ; a    • 
tpc_fix 

tpc.case 

A P fix j/:<7. e : a 

Note that we remove run-time assumptions at the down rule, while in [NN92] this is done later 
at the up rule. This change is justified since, by the structure of their rules, such assumptions can 
never be used in the compile-time deduction in between. 

6.3    Translation to Implicit Language 

The translation to Mini-MLD is now very simple. We translate both run-time and compile-time 
Mini-ML fragments directly, and insert □, box and unboxi to represent the changes between 
phases. We define two mutually recursive functions to do this: || • || is the run-time translation and 
| • | is the compile-time translation. We overload this notation by using it for types, terms, and 
contexts. We write e and e to match any term whose top constructor matches the phase annotation. 

Type Translation 

||nat||  =  nat |nat| = nat 
||TIZ±T2||  =  Unll -¥ \\T2\\        \<r1=?a2\ = |o-i| -> |o-21 
||ri^r2||  =  ijrijj x ||T2|| WiXa^l = \<ri\ X |cr2| 

lllll  =  1 111 = 1 
\T\ = D||r|| 
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Term Translation 

11* 
||Aff:r. e 
\\e1@e2 

||fix X:T. e 

ll<_el'C2_> 
e 

|snd e 

110 
||z 

Is e 

: a: 
: Aa;:||r||. \\e 
: INI INI 
: fixa;:||r||, 
(INI, IN 
fst ||e|| 
snd ||e|| 

0 

\y 
\Xy:a. e 

= y 
= Xy:\a\. \e\ 

\ex @ e2 

|flx y:a. e 
= |ci| |e2| 
=  flxy:|<r|. 

K ei,e2 ) 
|fste 

snd e 

= <|ei|,N> 
= fst |e| 
= snd \e\ 

101 = 0 
1*1 = z 

Is el "= s |e| 

[case ei of z =>• e2 I s * =^ e3|| = 
case ||ei|| of z =>• ||e2|| Isx^ ||e3| 

|case ex of z =^ e2 I s y =» e3| = 
case |ei| of z =>■ |e2| I s y M 

= unboxi lei box ||e| 

Context Translation 

||r,x:r|| = ||r||ia!:||r||      ( \A,y:a\ = \A\,y:\a\ 

6.4    Equivalence of Binding Time Correctness and Modal Correctness 

In this section we show that binding-time correctness is equivalent to modal correctness of the 
translation to Mini-MLD. Note that even though we use A and T to denote contexts, the implicit 
language Mini-ML° employs context stacks, where •; Tu ...; Tn is abbreviated as Ti;...; r„. 

Theorem 15 (Conservative Embedding) 

1. //||e|| = M then: 

(a) »/A;rhre:r then |A|; ||r|| P M : \\T\\; 

(b) if |A|; ||r|| M M : A then |A|; ||r|| F e : r with \\T\\ = A. 

2. If\e\ = M then: 

(a) i/AFe:(j then |A| M M : \a\; 

(b) if |A| P M : A then A hc e : a with \a\ = A. 

Proof: By simultaneous induction on the definitions of ||e|| and |e|. Note that we can take advan- 
tage of strong inversion properties, since we have exactly one typing rule for each term constructor 
in Mini-MLD and Mini-ML2, plus the up and down rules to connect the  F and  F judgments. 

We only show the two cases involving the up and down rules since all others are easy. 
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Case:    ||e|| = unboxi |e|, part la. 

A;rPe:r 
APe:r 
|A| P |e| : D||T|| 

|A|; ||r|| P" unbox! |c| : ||r| 

assumption 
by inversion (rule down) 

by i.h. 2a 
by rule tpLunbox 

Case:    ||e|| = unboxi |e|, part lb. 

|A|;||r||P'unboXl|e| : ||r|| 
|A| P |e| : D||r|| 
APe:r 
A;r P e : r 

assumption 
by inversion (rule tpLunbox) 

by i.h. 2b 
by rule down 

Case:    |e| = box ||e||, part 2a. 

A P e : T 

A;-Pe:r 
|A|;-P||e|| 
IAI P box 

: IMI 
lell : Dllrl 

assumption 
by inversion (rule up) 

by i.h. la 
by rule tpLbox 

Case:    |e| = box ||e||, part 2b. 

|A| P box ||e|| : D||r|| 
|A|;-P'||e||:||r|| 
A; •P e : r 
A hc e : T 

assumption 
by inversion (rule tpLbox) 

by i.h. lb 
by rule up 

D 

The translation and proof can be easily generalized from a two-level language to a B-level 
language [NN92] with an infinite linear ordering. In this case the image of the translation on 
well-typed terms is exactly the fragment Mini-ML^-, where unboxn is restricted to n = 1. This 
fragment corresponds to a weaker modal logic, K, in which we drop the assumption in S4 that the 
accessibility relation is reflexive and transitive [MM94], and which we discussed briefly in Section 2. 
Thus a corollary of the generalized theorem is that Mini-ML°- is equivalent to an infinite linear 
B-level language, since the translation is then a bijection which preserves correctness of typing. 

7    Examples 

We now present some standard examples from partial evaluation to illustrate the expressiveness 
of our language Mini-MLD. We use let x = E\ in Ei to introduce (non-polymorphic) top-level 
definitions; it may be considered syntactic sugar for (Xx:A. E2) E\. 
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7.1    Ackermann's Function 

We now present a program for calculating Ackermann's function that specializes to the first argu- 
ment. It is based on the following program: 

fix acker:nat —t nat -4 nat. 
Ara:nat. case m 

of z    =£• Xn:nat. sn 
I   s m'=$> An:nat. case n 

of z   =>■ acker m' (s z) 
I   s n'=*> ac&er m' (acker m n') 

Now, if we attempt to directly insert the modal constructors to divide this program into two 
stages, we get the following: 

fix acker:nat -> ü(nat -> nat). 
Am:nat. case m 

of z    =£• box (Areinat. sn) 
|  s m'=>- box (An:nat. case n 

of z =>• (unboxi (acker m')) (s z) 

I sn'=^(unboxi (acker m'))((unboxi (ac&er m))ra')) 

Unfortunately, when applied to the first argument, this function generally will not terminate. 
This is a common problem in partial evaluation, and the usual solution is to employ memoization 
during specialization, which works for many programs. Here we will simply note that the problem 
in this case is a recursive call to acker m while calculating acker TO, which can be removed by 
adding an additional fixpoint as follows. 

fix acker:nat —>■ D(nat -4 nat). 
Am:nat. case m 

of z    => box (An:nat. s n) 
I   s m'=$- box (fix ackm. An:nat. 

case n 
of z    =$■ (unboxi (acker m')) (s z) 

I s n'=» (unbox!   (acker m')) (ackm n')) 

This function will always terminate. The recursive applications appearing inside unboxi con- 
structors are evaluated when the first argument is given. The compilation of this function to 
Mini-ML° makes this more explicit: 

fix acker-.nat -4 0(nat —» nat). 
Am:nat. case m 

of z    =>• box (An:nat. s n) 
I  s m'=» let box / = acker m! in 

let box g = acker m' in 
box (fix ackm. An:nat. 

case n of z   =$■ f (s z) 
I   s n'=$> g (ackm n')) 

Notice that acker m' is unnecessarily calculated twice. This would be avoided if memoization 
was employed during the compilation or if we had explicitly bound a variable to the result of this 
computation. 
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7.2    Inner Products 

In [GJ95] the calculation of inner products is given as an example of a program with more than 
two phases. We now show how this example can be coded in Mini-MLD. We assume a data type 
vector in the example, along with a function submat —> vector —> nat to access the elements of a 
vector. ■/',•■■'■'',■"■;•■■ 

Then, the inner product example without staging is expressed in Mini-ML as follows: 

fix ip:r\at —>■ vector —)■ vector —> nat. 
Ara:nat. case n 
of z   =>• Aw:vector. Aiuivector. z 

I   s n'=$- Au:vector. Aw:vector. 
plus (times (sub n v) (sub n w)) 

(ip n' v w) 

We add in D, box and unbox; to obtain a function with three computation stages which is 
shown in Figure 1. We assume a function liftnat as defined earlier and afunction sw6':nat —> ü(vector —> nat) 
which is a specializing version of sub, that perhaps precomputes some pointer arithmetic based on 
the array index. We first define a staged version times' of times which avoids the multiplication in 
the specialization if the first argument is zero. This will speed up application of iprod' to its third 
argument, particularly in the case that the second argument is a sparse vector. 

let times':0(nat -> D(nat -¥ nat)) = 
box (Am:nat. case m 

of z    => box (An:nat. z) 
I   s m'=5* box (An:nat. times n (unboxi (Hflnat 

m)))) 
inlet iprod' = fix ip:nat —> D (vector —)• D (vector -4- nat)). 

An:nat. case n 
of z   =3> box (Avrvector. box (Awrvector. z)) 
I   s rc'=2> box (Au:vector. box (Aw:vector. 

plus (unboxi  (unboxi times'(unboxi (sub' n) v)) 
(unbox2 (sub' n) w)) 

(unboxi (unboxi (ip n') v) w))) 
in let iprodS : vector —>• D(vector -4- nat) = unboxo(^prod' 3) 
in let iprodSa : vector —>■ nat = unboxo (iprodS [7, 0, 9]) 
in let iprodSb : vector -> nat = unboxo (iprodS [7,8,0]) 
in 

Figure 1: Staged code for inner product. 

The last three lines show how to execute the result of a specialization using unboxo (corre- 
sponding to eval in Lisp). Also, the occurrence of unbox2 indicates code used at the third stage 
but generated at the first. These two aspects could not be expressed within the multi-level language 
in [GJ95]. 

Note the erasure of the unbox,- and box constructors in iprod' leaves the unstaged code, except 
that we used a different version of multiplication. The operational semantics of the two programs 
is of course quite different. 
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7.3    Regular Expression Matching 

We now present a program for regular expression matching that specializes to a particular regular 
expression. We use the full Standard ML language, augmented with our modal constructors. Our 
program is based on the non-specializing one in Figure 2, which makes use of a continuation function 
that is called with the remaining input if the current matching succeeds. We assume the following 
datatype declaration: 

datatype regexp 

= Empty 

I Plus of regexp * regexp 

I Times of regexp * regexp 
I Star of regexp 

I Const of string 

(* val ace : regexp -> (string list -> bool) -> (string list -> bool) *) 
fun ace (Empty) k s = k s 

I ace (Plus(rl,r2)) k s = ace rl k s orelse 
ace r2 k s 

I ace (Times(rl,r2)) k s = 
ace rl (fn ss => ace r2 k ss) s 

I ace (Star(r)) k s = 
k s orelse 
ace r (fn ss => if s = ss then false 

else ace (Star(r)) k ss) s 
I ace (Const(str)) k (x::s) = 

(x = str) andalso k s 
I   ace  (Const(str)) k  (nil) = false 

(* val accept  :  regexp ->  (string list -> bool)  *) 
fun accept r s = 

ace r (fn nil => true   |   (x::l) => false) s 

Figure 2: Unstaged regular expression matcher 

Note that there is a recursive call to ace (Star(r)) in the case for ace (Star(r)) which we can 
transform using a local definition, similar to the fix introduced in the Ackermann function example. 
This must be done so that specialization with respect to the regular expression terminates. The 
resulting code for this case is: 

I  ace  (Star(r))  k s = 
let fun accStar k s = 

k s orelse 
ace r 

(fn ss => if s = ss then false 

else accStar k ss) 
s 

in 

accStar k s 
end 
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Then, we can add in modal constructors to get the staged program in Figure 3 with the following 
types (using [A] here to represent □ A, following the syntax of PML [WLP98]) 

val acc2   :  regexp ->  [(string list -> bool)  ->  (string list -> bool)] 
val accept2  :  regexp ->   [string list -> bool] 

These types indicate that the required staging is achieved by the program. Inserting the modal 
constructors requires breaking up the function arguments, but is otherwise relatively straightfor- 
ward. We use ' for box and " for unboxi. More generally, we suggest using "n for unboxn. 

(* val acc2   :  regexp ->   [(string list -> bool)  ->   (string list -> bool)]   *) 
fun acc2  (Empty) =   '  fn k => fn s => k s 

I   acc2  (Plus(ri,r2)) =   '  fn k => fn s => 
*(acc2 ri) k s orelse 
~(acc2 r2) k s 

" I   acc2  (Times(rl,r2)) =   '  fn k => fn s => 
"(acc2 ri)   (fn ss => "(acc2 r2) k ss)  s 

I  acc2 (Star(r)) =  ' fn k => fn s => 
let fun acc2Star k s = 

k s orelse 
"(acc2 r) 

(fn ss => if s = ss then false 
else acc2Star k ss) 

s 
in 

acc2Star k s 
end 

I   acc2  (Const(str)) =   '  fn k => 
(fn  (x::ss)  => 

(x = "(lift_string str)) 
andalso k ss 

I  nil => false) 

(* val accept2  :  regexp ->   [string list -> bool]   *) 
fun accept2 r =   '  fn s => 

~(acc2 r)   (fn nil => true   I   (x::l)  => false)  s 

Figure 3: Modally staged regular expression matcher 

We can now use our compilation to the explicit language Mini-ML° to get an equivalently staged 
program. We can then further translate to a program in pure Standard ML, which is staged in the 
same way, but without the modal annotations, as shown in Figure 4. It is unnecessary to replace 
[A] by unit -> A in this case, since the code constructor (') is only applied to values. We show 
this program only to demonstrate the staging described by the the modal annotated program. The 
program in Mini-ML° has the potential to be more efficient, since optimized code can be generated 
by a sophisticated implementation. 

8    Related Work 

Our modal A^D-calculus is originally based on the modal A-calculus presented by Bierman and 
de Paiva [BdP92] and used by Pfenning and Wong [PW95], who call it the "explicit system". 
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(* val acc3 : regexp -> (string list -> bool) -> (string list -> bool) *) 
fun acc3 (Empty) = (fn k => fn s => k s) 

I acc3 (Plus(rl,r2)) = 
let val al = acc3 rl 

val a2 = acc3 r2 
in 

(fn k => fn s => al k s orelse ä2 k s)      ' 
end 

I acc3 (Times(ri,r2)) = 
let val al = acc3 rl 

val a2 = acc3 r2 
in 

(fn k => fn s => al (fn ss => a2 k ss) s) 
end 

I acc3 (Star(rl)) = 
let val al = acc3 rl 

fun acc3Star k s = 
k s orelse 
al (fn ss => if s = ss then false 

else acc3Star k ss) 
s .- 

in 
(fn k => fn s => acc2 k s) 

end 
I acc3 (Const(str)) = 
(fn k => (fn (x::s) => (x = str) andalso k s 

I nil => false)) 

(* val accept3  :  regexp ->  (string list -> bool)  *) 
fun accept3 r = 

acc3 r  (fn nil => true   I   (x::l) => false) 

Figure 4: Pure SML staged regular expression matcher 

Our calculus avoids the use of simultaneous substitution by using both a modal context and an 
ordinary one, following the sequent calculi proposed by Andreoli [And92] for linear logic and by 
Girard [Gir93] for LU. The result is similar to the linear A-calculus formulated by Wadler [Wad93]. 

The language Mini-ML° is constructed by combining A^D and Mini-ML [CDDK86]. The lan- 
guage Mini-ML ° is based on the "implicit" modal A-calculus presented in [PW95], which uses a 
stack of ordinary contexts rather than two contexts. Mini-MLD avoids the pop structural rule 
of [PW95], which is difficult to motivate from the point of view of natural deduction, by instead 
removing contexts from the stack at the DE rule. The compilation from Mini-MLD to Mini-ML° 
is inspired by one direction of the proof of equivalence between the two calculi given in [PW95]. 
Systems similar to the implicit modal A-calculus of [PW95] have been proposed by Martini and 
Masini [MM94], who introduce a simple reduction semantics, and Bourghuis [Bor94], who considers 
modal pure type systems. None of the prior work on modal A-calculi has considered the relationship 
to computation staging. 

Partly motivated by a previous version of the current paper [DP96], Goubault-Larrecq [GL96a, 
GL96b, GL96c, GL97] has proposed a formulation of modal A-calculi using explicit substitutions. 
While this system has some interesting properties as a calculus, in particular giving a finer grained 
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analysis of reduction and equality, it is unclear how this is relevant to the design of a programming 
language with staging primitives. 

Despite some superficial similarities, our code types are quite different from Moggi's computa- 
tional types based on monads [Mog89, Mog91] which only distinguish values from computations 
and do not allow expression of stage separation. Moreover, our intended implementation of code 
is intensional, since we wish to allow refinements of our semantics to optimize code, while Moggi's 
computations are extensional with evaluation as the only operation. In current work (as yet un- 
published) we have been able to explain computational types cleanly in our framework via a com- 
bination of the intuitionistic possibility operator <> and necessity. This follows an earlier suggestion 
by Kobayashi [Kob97] and a related investigation by Benton, Bierman and de Paiva [BBdP98] who 
establish a connection between the computational A-calculus and lax logic [FM97]. 

We have shown how some standard examples of specialization can be expressed in Mini-MLD. 
More complicated examples might require more advanced techniques to achieve the desired staging, 
such as the binding-time improvements used in partial evaluation. Memoizing when generating code 
is another useful technique used in partial evaluation, and [WLP98] shows how this technique can 
be programmed in a language with modal types. See [BW93] for a description of a realistic partial 
evaluator for Standard ML and [JGS93] for an overview of standard techniques and examples of 
partial evaluation. 

One possible criticism of our languages is that they only manipulate closed code during ex- 
ecution, which restricts the staging that can be expressed compared to the two-level languages 
used in partial evaluation such as that proposed by Gomard and Jones [GJ91]. This is solved in 
Mini-MLD by A-abstracting code expressions over their free variables, and then later generating an 
application to the actual variables. This results in a number of variable for variable /3-redices in 
the generated code in our examples. Of course, a lower level implementation could reduce these 
redices for efficiency, but this is not reflected in the language semantics. From a practical point of 
view, the reason for only treating closed code is that we need to be able to evaluate code without 
danger of encountering unbound variables. This is in contrast to the binding-time languages used in 
partial evaluation, which allow manipulation of code containing free variables, but do not support 
evaluation of code as a construct within the language. Instead, evaluation of the result of partial 
evaluation is an external operation applied only to whole programs, the properties of which have 
been studied separately by Jones [Jon91]. In other work [Dav96], one of the present authors has 
shown that the O ("next") operator from non-branching temporal logic exactly models the looser 
correctness criterion used in partial evaluation. Interestingly, the resulting languages are unsound 
when general references or value carrying exceptions are added, since these features allow a code 
expression with free variables to escape the binders for those variables. 

Taha and Sheard [TS97] have directly constructed a language similar to Mini-MLD which allows 
manipulation of code with free variables as well as type-safe evaluation, but their original design 
proved to be unsound in that free variables may be encountered during evaluation. This is fixed 
in [TBS98], resulting in a language called Meta-ML which is sound in the absence of references and 
exceptions, but it seems more operationally, rather than logically motivated. More recent work on 
Meta-ML has concentrated on an idealized language [MTBS99] and makes quite direct use of the 
results in the previous version of this paper [DP96] as well as [Dav96]. 

Over the last few years there has been a lot of interest in run-time code generation in high- 
level languages. Engler, Hsieh and Kaashoek [EHK96] describe an extension of the progamming 
language C called 'C (pronounced "tick C") which uses similar mechanisms to Mini-MLD to achieve 
computation staging. However, the type system lacks the modal restriction on variables, so it allows 
variables to be used when their values are not available, which may result in incorrect results 
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or runtime errors. Consel and Noel [CN96] describe a system called Tempo which allows both 
partial evaluation and run-time code generation for the C language. Standard binding-time analysis 
techniques are used, along with separate annotations to describe where run-time specialization 
should be done. These annotations roughly correspond to the unbox0 construct in Mini-MLD, 
while the annotations resulting from the binding-time analysis roughly correspond to the box 
and unboxi constructs,: although the 'restriction of MinUML0 to closed code i means that this 
correspondence is not exact. Leone and Lee [LL94, LL96] describe a small ML-like language and 
a corresponding implementation called Fabius which treats curried functions as run-time code 
generators, using a new form of binding-time analysis. The staging achieved is quite different to 
that obtained using ordinary binding-time analysis, and one of the original motivations for the 
current work was to allow a formal characterization of this staging. Fabius also uses a very fast 
form of run-time code generation called deferred compilation. 

Deferred compilation has also recently been used by Wickline, Lee and Pfenning [WLP98] as 
an implementation technique for a language based on Mini-ML° called PML which includes most 
of core SML and performs run-time code generation based on modal types. The extension to core 
SML was very smooth even though the language includes polymorphism, datatypes, references 
and arrays. A simple compiler for this language has been completed, and work is continuing on 
improved implementations. 

9    Conclusion and Future Work 

In this paper we have proposed a logical interpretation of binding times and staged computation 
in terms of the intuitionistic modal logic S4. We first presented the A^D-calculus, and formally 
demonstrated the sense in which it captures staging. We then extended this to the explicit lan- 
guage Mini-ML° (including recursion, natural numbers, and products) and presented its natural 
operational semantics. We continued by defining an implicit language Mini-MLD which might 
serve as the core for an extension of a language with the complexity of Standard ML, and which 
is syntactically similar to both Lisp's backquote and comma notation, as well as the languages 
used in partial evaluation. The operational semantics of Mini-MLD is given by a type-preserving 
compilation to Mini-ML°. Further, Mini-MLD generalizes Nielson & Nielson's two-level functional 
language [NN92] which is demonstrated by a conservative embedding theorem, an important tech- 
nical result of this paper. 

Our approach provides a general, logically motivated framework for staged computation that 
includes aspects of both partial evaluation and run-time code generation. As such it allows efficient 
code to be generated within a declarative style of programming, and provides an automatic check 
that the intended staging is achieved. 

Our investigation remains at a relatively abstract level, thus providing a general framework in 
which various staging mechanisms may be studied from a new point of view. We implemented the 
original interpreter for Mini-MLD in the logic programming language Elf [Pfe91], thus allowing us 
to perform small experiments at this abstract level. Concrete instances such as partial evaluation, 
run-time code generation, or macro expansion will require some additional considerations for their 
effective use and efficient implementation. The application to run-time code generation appears 
particularly promising and is described in more detail, including an extended example, in work by 
the current authors in conjunction with Wickline and Lee [WLPD98]. We hope that future design 
and implementation work will lead to a practical full-scale programming language with computation 
staging based on modal types. 
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